尽管,组织液在脑实质中的运输在传统意义上被认为是以扩散(diffusion)的形式进行的,然而,诸多研究显示啮齿动物大脑中存在类淋巴系统(lymphaticlike system),且类淋巴系统或许是大脑清除机制的补充【6-7】。
自2012年起,随着对活鼠大脑双光子显微研究的不断深入,发现小鼠脑中的确存在淋巴通路(glymphatic(glial-lymphatic)pathway),即胶质淋巴途径,一种新颖且具有实质能力的大脑清除机制【7-8】。
这一新通路在啮齿类动物中的揭示加深了我们对脑清除机制的基本理解,并且,为开发针对于神经退行性疾病早期风险评估、诊断、预后及治疗的临床工具提供了思路。随着对脑内外脑脊液通路(包括硬脑膜淋巴网络)更详细的了解,我们也对脑脊液动力学有了新的认识【9-10】。
最近,Martin Kaag Rasmussen(丹麦哥本哈根大学健康与医学科学学院),Humberto Mestre(美国罗切斯特大学医学中心神经外科与神经科学系)及 Maiken Nedergaard(同上)共同在Lancet Neurology(IF=27.138)发表了以题为The glymphatic pathway in neurological disorders的综述性文章(Rapid Review)【11】。
本篇综述中,三位研究者总结、分析了近期关于人脑和动物模型中脑脊液介导的大脑清除机制的研究进展、以及人类胶质淋巴通路的临床研究现状,同时,对未来相关重点工作做了展望【11】。
胶质淋巴通路是一个高度组织化的流体运输系统。目前在动物模型中已有了较好的认识。胶质淋巴通路由三个不同的解剖区域构成:动脉周间隙、静脉周间隙、以及介入其中的脑实质(Fig.1)【8,10】。通路内的流体流动依赖于脑脊液从蛛网膜下腔进入动脉周腔。在通路的每个解剖区域内,不同的因素都会影响流体的动力学,然而其中一些因素还没有被完全阐明【8】。
具体而言,在通路的初始部位,脑脊液从蛛网膜下腔经大细静脉动脉的血管周间隙流入大脑。随着血管分枝,脑脊液通过贯穿动脉的血管周围间隙进入脑实质(Fig.2)【8】。脑脊液从血管周间隙流过胶质基底膜和星形胶质细胞脚板,进而包裹脑血管【8】。而星形胶质细胞终脚板则会大量表达水通道蛋白4(aquaporin 4,AQP4),从而以促进脑脊液流入脑实质,并与组织液混合。在间质中,流体通过极化的净流体运动向静脉血管周围和周神经间隙扩散【8】。最终,脑脊液沿着颅脊髓神经、脑膜淋巴管和蛛网膜下腔释放【10,12】。
但整体上而言,每一条清除途径的相对重要性是饱受争议的【10】。并且,在小鼠和人类中,脑脊液的一个主要的外排位点是沿着嗅觉神经,通过筛状板进入鼻腔粘膜,最后到达颈部淋巴管【10,12】。
从最近的动物研究和建模分析的结果来看,流体在胞外的运动是以扩散的形式进行的,并且对流流动的某一组分仅存在于血管周围间隙(Fig.1)【13】。然而,由于缺乏非侵入式成像技术,所以在研究技术上,对由存在于人类大脑封闭隔间的低压力梯度所引起的流体流动的研究仍具有很大挑战。
在众多创伤性脑损伤(traumatic brain injury)、AD及脑卒中(stroke)的动物模型研究中已证实,淋巴功能障碍可能与紊乱的AQP4表达有关【14-15】。此外,综合对啮齿动物和人类中的淋巴系统和脑膜淋巴系统的研究结果来看,需要重新阐明脑脊液-间质流体流动的解剖路径,以及再次确认这些路径在中枢神经系统健康中所起的具体生理作用【8,15】。
人类的淋巴系统和脑膜淋巴系统的几个特征已经被证明存在。脑脊液的对流流入与组织液的周静脉流出彼此平衡,这一过程有助于清除有毒蛋白质的代谢产物,如Aβ等【8】。
通过MRI(核磁共振)扫描结合鞘内注射造影剂,发现人类大脑中的脑脊液流动模式类似于啮齿类动物中的胶质淋巴途径(Fig.3)【16-17】。此外,PET(positron emission tomography,正电子发射断层显像)数据表明,Aβ会在历经一夜睡眠剥夺的健康大脑中出现积累,这说明人类胶质淋巴途径也可能主要活跃在睡眠当中(Fig.3)【18-19】。
其他PET研究也表明,与健康的对照组相比,AD患者中脑脊液对Aβ和tau蛋白示踪剂的清除下降了(Fig.3)【18】。并且,Martin Kaag Rasmussen等人认为,脑脊液清除的减弱与人脑中Aβ的灰质浓度上升密切相关,相应的研究也证实了淋巴功能减弱会导致Aβ积累(Fig.3)【17,20】。
此外,临床研究也暗示出AD患者或正常压性脑积水患者的脑组织中AQP4表达发生了明显改变;而且,在对特发性正常压力脑积水患者进行淋巴MRI扫描时,发现整个脑脊液的清除减少了(Fig.3)【17-18】。
最后,Martin Kaag Rasmussen等人总结到,在将来的研究中,需要进一步阐明影响动啮齿动物淋巴途径的特定因素是否也适用于人类。同时,通过纵向成像研究对人类脑脊液动力学进行评估,进而确定在脑溶质清除减少和神经退行性疾病发展之间是否存在特定的因果联系。
其次,通过评估脑卒中或外伤性脑损伤后的淋巴功能,将有助于确定该功能是否与神经恢复相关。另外,为了更好地开发新的预防性和诊断性工具、以及寻找新的治疗靶点,则需要阐明在行为学和遗传学层面上淋巴功能是如何发生改变的、以及这种功能在疾病中是如何发挥其作用的。
主要文献参考
【1】Brown RH, AlChalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377: 162–72.
【2】Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumabreduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537: 50–56.
【3】Peng C, Gathagan RJ, Covell DJ, et al. Cellular milieu imparts distinct pathological αsynuclein strains in αsynucleinopathies. Nature 2018; 557: 558–63.
【4】Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem 2015; 84: 435–64.
【5】TarasoffConway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 2015; 11: 457–70.
【6】CasleySmith JR, FoldiBorcsok E, Foldi M. The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 1976; 57: 179–88.
【7】Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 1977; 25: 461–73.
【8】Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4: 147ra11.
【9】Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337–41.
【10】Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8: 1434.
【11】Martin Kaag Rasmussen, Humberto Mestre, Maiken Nedergaard.The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17: 1016–24
【12】Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, nonhuman primates and other mammalian species. Cerebrospinal Fluid Res 2004; 1: 2.
【13】Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin4independent solute transport in rodent brain parenchyma. Elife 2017; 6: 1–16.
【14】Murlidharan G, Crowther A, Reardon RA, Song J, Asokan A. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 2016; 1: e88034.
【15】Luo C, Yao X, Li J, et al. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis 2016; 7: e2160.
【16】DrehaKulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, Gärtner J, Frahm J. Inspiration is the major regulator of human CSF flow. J Neurosci 2015; 35: 2485–91.
【17】Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 2017; 140: 2691–705.
【18】de Leon MJ, Li Y, Okamura N, et al. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J Nucl Med 2017; 58: 1471–76.
【19】ShokriKojori E, Wang GJ, Wiers CE, et al. βAmyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 2018; 115: 4483–88.
【20】Venkat P, Chopp M, Zacharek A, et al. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies. Neurobiol Aging 2017; 50: 96–106.
本文荟萃自 LTNeurosci 逻辑神经科学,只做学术交流学习使用,不做为临床指导,本文观点不代表数字重症立场。